Effects of Thinning Intensities on Soil Infiltration and Water Storage Capacity in a Chinese Pine-Oak Mixed Forest
نویسندگان
چکیده
Thinning is a crucial practice in the forest ecosystem management. The soil infiltration rate and water storage capacity of pine-oak mixed forest under three different thinning intensity treatments (15%, 30%, and 60%) were studied in Qinling Mountains of China. The thinning operations had a significant influence on soil infiltration rate and water storage capacity. The soil infiltration rate and water storage capacity in different thinning treatments followed the order of control (nonthinning): <60%, <15%, and <30%. It demonstrated that thinning operation with 30% intensity can substantially improve soil infiltration rate and water storage capacity of pine-oak mixed forest in Qinling Mountains. The soil initial infiltration rate, stable infiltration rate, and average infiltration rate in thinning 30% treatment were significantly increased by 21.1%, 104.6%, and 60.9%, compared with the control. The soil maximal water storage capacity and noncapillary water storage capacity in thinning 30% treatment were significantly improved by 20.1% and 34.3% in contrast to the control. The soil infiltration rate and water storage capacity were significantly higher in the surface layer (0~20 cm) than in the deep layers (20~40 cm and 40~60 cm). We found that the soil property was closely related to soil infiltration rate and water storage capacity.
منابع مشابه
Thinning pine plantations to reestablish oak openings species in northwestern Ohio.
Globally the area in forest plantations is rising by 2% annually, increasing the importance of plantations for production of human goods and services and for ecological functions such as carbon storage and biodiversity conservation. Specifically in the Great Lakes states and provinces of Midwestern North America, thousands of hectares of pine plantations were established in the early and mid-19...
متن کاملSoil Properties in 35 y old Pine and Hardwood Plantations after Conversion from Mixed Pine-hardwood Forest
—Past management practices have changed much of the native mixed pinehardwood forests on upland alluvial terraces of the western Gulf Coastal Plain to either pine monocultures or hardwood (angiosperm) stands. Changes in dominant tree species can alter soil chemical, biological, and physical properties and processes, thereby changing soil attributes, and ultimately, soil functions. Restoring the...
متن کاملImpacts of drought on tree mortality and growth in a mixed hardwood forest
The tree and shrub species on a 16-ha watershed in the Coweeta Basin were sampled in 1984 and again in 1991 to determine the effects of drought on tree species composition and basal area growth. Mortality and radial growth were determined for tree species within three community types that represent a moisture gradient from moist to dry: covehardwoods > mixed-oak > oak-pine. Tree mortality from ...
متن کاملSoil responses to management, increased precipitation, and added nitrogen in ponderosa pine forests.
Forest management, climatic change, and atmospheric N deposition can affect soil biogeochemistry, but their combined effects are not well understood. We examined the effects of water and N amendments and forest thinning and burning on soil N pools and fluxes in ponderosa pine forests near Flagstaff, Arizona (USA). Using a 15N-depleted fertilizer, we also documented the distribution of added N i...
متن کاملHydrologic and Water Quality Effects
Forest operations such as harvesting, thinning, and site preparation can affect the hydrologic behavior of watersheds on poorly drained soils. The influence of these operations conducted on organic soil sites can be more pronounced than on mineral soil sites due to the differences in bulk density and soil moisture relationships that exist between mineral and organic soils. This article reports ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014